It is given that
A stone is thrown into a pond, A circular ripple spreads over the pond in such a way that the radius is increasing at a rate of 2.5 feet per second.
In one second the increment in radius is 2.5 feet
After t seconds, the increment in radius is given by
![r(t)=2.5t](https://img.qammunity.org/2023/formulas/mathematics/college/vw9pf3wa7j4n86map23gpxvsxm0mgpyb4c.png)
The area of the circular ripple is
![A(r)=\pi r^2](https://img.qammunity.org/2023/formulas/mathematics/college/6pueppmtyt8ob594uw2wh6d844gkkg074v.png)
![(A\circ r)(t)=A\lbrack r(t)\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/habz224jswyzlsupcl08wxtnv1iuo4ewr4.png)
Substitute r(t)=2.5t, we get
![(A\circ r)(t)=A\lbrack2.5t\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/fdqbwxqj0ymnkeozw3mjaqg43cfzotyfjz.png)
![UseA(r)=\pi r^2,\text{ we get}](https://img.qammunity.org/2023/formulas/mathematics/college/dk5bvyk44ar1yq3pz7pmy38xyqbuwmtc28.png)
![(A\circ r)(t)=\pi(2.5t)^2](https://img.qammunity.org/2023/formulas/mathematics/college/eu0c1y8miub9t67ni9dspbagwvfhmchxdq.png)
The required function is
![(A\circ r)(t)=6.25\pi t^2](https://img.qammunity.org/2023/formulas/mathematics/college/criwcagup7do215m5463nuid80n76lr0zb.png)
Hence the fourth option is correct.