Answer:
The solution to the system of equations is;
![\begin{gathered} x=0 \\ y=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u96g258j4nzz1cy9zlbb0o7c2fhng2xh1r.png)
Step-by-step explanation:
Given the system of equations;
![\begin{gathered} 2x+4y=8\text{ ----------1} \\ x=3y-6 \\ x-3y=-6\text{ ----------2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/48r9iy4xzimze0ns97y6lay1rkavdb77je.png)
Multiplying equation 2 by 2 and subtracting from equation 1;
![\begin{gathered} x-3y=-6 \\ * \\ 2 \\ = \\ 2x-6y=-12\text{ -----------2.1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2yoncspcyaxzddof3auupmbyizheh97wm0.png)
![\begin{gathered} 2x+4y=8\text{ ----------1} \\ - \\ 2x-6y=-12\text{ -----------2.1} \\ = \\ 0+10y=20 \\ 10y=20 \\ y=(20)/(10) \\ y=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bm8iudrf6u7u0ejxhe740awxkp2kxzacss.png)
We can then substitute the value of y into equation 1, to get x;
![\begin{gathered} 2x+4y=8 \\ 2x+4(2)=8 \\ 2x=8-8 \\ 2x=0 \\ x=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/h10ty2yxwaqvbook5z438hyudox9klj4e5.png)
Therefore, the solution to the system of equations is;
![\begin{gathered} x=0 \\ y=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u96g258j4nzz1cy9zlbb0o7c2fhng2xh1r.png)