Let's call x and y to the unknown numbers. Their addition must be equal to 221, then:
x + y = 221
Isolating y, we get:
y = 221 - x
The product of these numbers is:
![\begin{gathered} f(x)=x\cdot y \\ f(x)=x(221-x) \\ \text{ Distributing:} \\ f(x)=221x-x^2 \\ Or \\ f\mleft(x\mright)=-x^2+221x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6mo0vy09vvyyhimzjqj7n9x5zsmnldrkvn.png)
In this function, the leading coefficient is negative (-1), then the quadratic function has a maximum.