Answer: We need to construct a table for the given function, and then graph it and answer all the remaining parts:
![f(x)=((1)/(2))^x\Rightarrow(1)](https://img.qammunity.org/2023/formulas/mathematics/college/xu7d26ytkbsvma9084784vgag3fg0ht42q.png)
(a) The table for function (1) Is as follows:
The plot is as follows:
(B) Domain of the function:
The domin of the function can be determined by inspecting the graph, therefore the domain is as follows:
![D\in(\infty,\infty)\Rightarrow\text{ All real numbers}](https://img.qammunity.org/2023/formulas/mathematics/college/b5bps6uljboou878734tl9zezbl6ez6t6p.png)
(C) Range of the function is:
![R\in(0,\infty)\Rightarrow\text{ All numbers greater than 0}](https://img.qammunity.org/2023/formulas/mathematics/college/jmxjwtn9wxpj8m4mcjrdbs7ql9iza2phqm.png)
(D) Equation of the asymptote.
![\begin{gathered} f(x)\Rightarrow0 \\ ((1)/(2))^x\rightarrow0\Rightarrow x=\infty \\ f(x)\Rightarrow\infty \\ ((1)/(2))^x=\frac{1}{2^x^{}}\rightarrow\infty \\ \therefore\rightarrow \\ 2^x=0\rightarrow(1) \\ \text{ The equation (1) is only true for the largest negative number} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bmmc7smcnhxgw0danwqippuaek960gc1um.png)
(E) Y-intercept:
![x=0,y=1](https://img.qammunity.org/2023/formulas/mathematics/college/5use4cz0rnk54wsfs7tiwzu8ir6bdm05xa.png)