82.5k views
1 vote
Rewrite the following as a product of trigonometric functions:sin 3° + sin 37°

1 Answer

5 votes

Recall the following sum-to-product formulas of trigonometric function


\sin \alpha+\sin \beta=2\sin \mleft((\alpha+\beta)/(2)\mright)\cos \mleft((\alpha−\beta)/(2)\mright)

Given the sum


\begin{gathered} \sin 3\degree+\sin 37\degree \\ \\ \alpha=3\degree \\ \beta=37\degree \end{gathered}

Then the product is


\begin{gathered} \sin 3\degree+\sin 37\degree=2\sin \mleft((3\degree+37\degree)/(2)\mright)\cos \mleft((3\degree-37\degree)/(2)\mright) \\ \\ \text{Simplifying we get} \\ \sin 3\degree+\sin 37\degree=2\sin \Big{(}(40\degree)/(2)\Big{)}\cos \Big((-34\degree)/(2)\Big) \\ \sin 3\degree+\sin 37\degree=2\sin (20\degree)\cos (-17\degree) \end{gathered}

User Kabal
by
4.4k points