Answer:
AC/BC = 11 / 5
Explanations:
To find the ratio AC / BC
Step 1: Identify the coordinates of A, B and C
A ( -5, 0), B( 1, 0), C(6, 0)
Step 2: Find the distance AC and BC
![\begin{gathered} Dis\tan ce\text{ betw}een\text{ two points is calculated with the formula:} \\ D\text{ = }\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}^{} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/elx0565kov95mjwjodegs1v7wkmnvaqkx7.png)
For the distance AC:
A ( -5, 0), C(6, 0)
![\begin{gathered} x_1=-5,y_1=0,x_2=6,y_2=0 \\ AC\text{ = }\sqrt[]{(6-(-5))^2+(0-0)^2^{}} \\ AC\text{ = }\sqrt[]{(6+5)^2} \\ AC\text{ = }\sqrt[]{11^2} \\ AC\text{ = 11} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zcl6sc0c45bjj8s889z60hf7kf4vclzrbu.png)
For the distance BC:
B( 1, 0), C(6, 0)
![\begin{gathered} x_1=1,y_1=0,x_2=6,y_2=0 \\ BC\text{ = }\sqrt[]{(6-1)^2+(0-0)^2} \\ BC\text{ = }\sqrt[]{5^2} \\ BC\text{ = 5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2fbwiwcxuxw9vusf4qpsnpig0ztvbgbkdo.png)
AC/BC = 11 / 5