Soluion:
Given the figure below:
OAB is congruent to OCD.
Thus, to evaluate the area of the shaded rortion, we have
![2(area\text{ of the sector - area of the triangle OAB\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/wfyszmkk0gcu8w8vzx9kt6ddn6jrmgd1o4.png)
Step 1: Evluate the area of tehe sector OAB.
The area of the sector of a sector is expressed as
![\begin{gathered} Area_(sector)=(\theta)/(360)*\pi r^2 \\ where \\ \theta\Rightarrow central\text{ angle} \\ r\Rightarrow radius\text{ of the circle} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qxo870dym0izvftxbkbs5muc4v8lokb8ow.png)
Thus,
![\begin{gathered} central\text{ angle AOB= 180-90} \\ =90 \\ radius,\text{ r=6 ft.} \\ thus, \\ Area_(sector)=(90)/(360)*\pi*6\text{ ft}*6\text{ ft} \\ =9\pi\text{ square feet} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q9y83u4e8jp9a5177ulamsu36v7yr58mzp.png)
Step 2: Evaluate the area of the triangle OAB.
The area of the triangle OAB is expressed as
![\begin{gathered} Area_(triangle)=(1)/(2)ab\sin C \\ where \\ a\Rightarrow OA \\ b\Rightarrow OB \\ C\Rightarrow\angle O \\ OA=OB=6\text{ ft} \\ thus, \\ Area_(triangle)=(1)/(2)*6ft*6ft*\sin90 \\ =18\text{ square feet} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gsk33ptb2xtgfrm9wkgqiz4qieevkfjzrk.png)
Step 3: Evaluate the area of the shaded portion.
Recall that OAB is congruent to OCD,
![OAB\cong OCD](https://img.qammunity.org/2023/formulas/mathematics/college/4p0lrydrcfl569qxtjablgis81z5qrpbyx.png)
Thus, we have the area of the shaded portion to be evaluated as
![\begin{gathered} 2(area\text{ of the sector - area of the tr}\imaginaryI\text{angle OAB}\operatorname{\rparen} \\ =2(9\pi-18) \\ =18(\pi-2)\text{ square feet} \end{gathered}]()
Hence, the area of the shaded region is
![18(\pi-2)\text{ square feet}](https://img.qammunity.org/2023/formulas/mathematics/college/shnqocfulrzj8jnbvrfokl7lu5svm23wfr.png)