We have the following:
In this case the first thing is to calculate the value of the hypotenuse, by means of the cosine function.
![\begin{gathered} \cos \theta=\frac{\text{adjacent}}{\text{hypotenuse}} \\ \theta=30 \\ \text{adjacent = 12} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gxtbjbfy8x2bjy8lxq1vm4c1jhcyd32355.png)
replacing:
![\begin{gathered} \cos 30=\frac{12}{\text{hypotenuse}} \\ \text{hypotenuse}=12\cdot\cos 30=13.86 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fvjmmtw0s6eox53yvwouubewvp6e9vkf87.png)
now, to calculate the side we use the Pythagorean theorem, as follows
![\begin{gathered} c^2=a^2+b^2 \\ 13.86^2=12^2+b^2 \\ b^2=13.86-12^2 \\ b=6.94 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/cz2ffi23yj10667uveamvffzd5tcjzzltq.png)
Therefore, the area is:
![\begin{gathered} A=(12\cdot6.94)/(2) \\ A=41.64 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/i00agvaraxm4yw5m25wyl83ozusrcnesfr.png)
The area is 41.64 ft^2