Given the following function:
![\text{ y = f\lparen x\rparen = }\sqrt[3]{x}\text{ + 6}](https://img.qammunity.org/2023/formulas/mathematics/college/oqt7xejtvbplh2tj6331jh87avvvymwwyf.png)
Let's determine 5 points that pass through its graph.
Since the function involves a cube root, let's use numbers that are perfect cubes to easily plot it.
Let's use x = 0, 1, -1, 8, -8
We get,
At x = 0,
![\text{ f\lparen0\rparen = }\sqrt[3]{0}\text{ + 6 = 0 + 6 = 6}](https://img.qammunity.org/2023/formulas/mathematics/college/amwhau7tz6cfpvloenqlec1ecpxhblyw0k.png)
Point 1 : (0, 6)
At x = 1,
![\text{ f\lparen1\rparen = }\sqrt[3]{1}\text{ + 6 = 1 + 6 = 7}](https://img.qammunity.org/2023/formulas/mathematics/college/q9c96hz64s70c55rprm5u41r89ncet4v87.png)
Point 2: (1, 7)
At x = 8,
![\text{ f\lparen8\rparen = }\sqrt[3]{8}\text{ + 6 = 2 + 6 = 8}](https://img.qammunity.org/2023/formulas/mathematics/college/r5275ke3bqxtlxrqurga1lrpi12unfqpse.png)
Point 3: (8, 8)
At x = -1,
![\text{ f\lparen-1\rparen = }\sqrt[3]{-1}\text{ + 6 = -1 + 6 = 5}](https://img.qammunity.org/2023/formulas/mathematics/college/g9ry5gqjv0io41z93wd7x45opq2ylzolpo.png)
Point 4: (-1, 5)
At x = -8,
![\text{ f\lparen-8\rparen = }\sqrt[3]{-8}\text{ + 6 = -2 + 6 = 4}](https://img.qammunity.org/2023/formulas/mathematics/college/40dls3py3kkya7eg1y7vdn5bv8u3z2h20v.png)
Point 5: (-8, 4)
Let's now plot the points and the graph of the function: