Answer:
Select the cans with a radius of 2.5 in
Step-by-step explanation:
The volume of a cylinder can be calculated as:
![V=\pi\cdot r^2\cdot h](https://img.qammunity.org/2023/formulas/mathematics/college/n3115jxdztqydpk839rmiw7mlgufr9g5b6.png)
Where r is the radius and h is the height of the cans. So, solving for h, we get:
![\begin{gathered} (V)/(\pi\cdot r^2)=(\pi\cdot r^2\cdot h)/(\pi\cdot r^2) \\ (V)/(\pi\cdot r^2)=h \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5y6i0d1bf765ht778np97ogcrl9q6z23jh.png)
Therefore, the height for each radius is equal to:
![\begin{gathered} h=(90)/(3.14\cdot2^2)=7.16\text{ in} \\ h=\frac{90}{3.14\cdot2.5^2^{}}=4.58\text{ in} \\ h=(90)/(3.14\cdot3^2)=\text{ 3.18 in} \\ h=(90)/(3.14\cdot3.5^2)=\text{ 2.34 in} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qkmpd7klhm0aegruadgbd2ezjbaqdfn4h6.png)
Then, the lateral surface for each radius can be calculated as:
![A=2\pi rh](https://img.qammunity.org/2023/formulas/mathematics/college/xoucte0p7t99cyggscbk9in29uvmkpp53h.png)
So, the lateral surface for each cylinder is:
![\begin{gathered} A=2(3.14)(2)(7.16)=90in^2 \\ A=2(3.14)(2.5)(4.58)=72in^2 \\ A=2(3.14)(3)(3.18)=60in^2 \\ A=2(3.14)(3.5)(2.34)=51.43in^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4gkfemvyx9owpwi91z9u2o0x8mm5whxx7v.png)
Therefore, the complete table is:
Radius Height Lateral Sur Volume
2 7.16 in 90 in² 90
2.5 4.58 in 72 in² 90
3 3.28 in 60 in² 90
3.5 51.43 in 51.43 in² 90
So, the company should select the can with a radius of 2.5 in because it has a height lower than 5 in and the lateral surface area is the greatest.