Given the polynomial:
![x^3-7x^2+7x+15](https://img.qammunity.org/2023/formulas/mathematics/college/byg9grfxlsy4toqojzsqemhqmtxr2clq1o.png)
You can factorize it as follow:
1. Rewrite the term with exponent 2 in this form:
![-7x^2=x^2-8x^2](https://img.qammunity.org/2023/formulas/mathematics/college/fb9rao87lxepjt1n6dr9uq5vmw21j00pls.png)
2. Rewrite the x-term in this form:
![7x=-8x+15x](https://img.qammunity.org/2023/formulas/mathematics/college/80pxnkb9byusrehpvpppa7jnaohhnaqqak.png)
3. Rewrite the expression:
![=x^3+x^2-8x^2-8x+15x+15](https://img.qammunity.org/2023/formulas/mathematics/college/fnddeynteatuhbessyg74sprc8o35j4o67.png)
4. Make three groups of two terms each using parentheses:
![=(x^3+x^2)-(8x^2+8x)+(15x+15)](https://img.qammunity.org/2023/formulas/mathematics/college/7c2khwjl1rpkjca3uh36xylqdl7bpne5o9.png)
5. Identify the Greatest Common Factor (GCF) of each group (the largest factor that all the terms in the group have in common):
- For:
![(x^3+x^2)](https://img.qammunity.org/2023/formulas/mathematics/college/4em5hikh35rlwddfc3y9c94klgjfizid1a.png)
The Greatest Common Factor is:
![GCF=x^2](https://img.qammunity.org/2023/formulas/mathematics/college/z7ovkserczks03te8p8e72gipu6m4mk1nc.png)
- For:
![(8x^2+8x)](https://img.qammunity.org/2023/formulas/mathematics/college/qy0n5xb42vzvzsy1uo0eiwi8fcsofni0so.png)
The Greatest Common Factor is:
![GCF=8x](https://img.qammunity.org/2023/formulas/mathematics/college/6pruklqskjp5eo3nnniffypxc7cpwvzf2w.png)
- And for:
![(15x+15)](https://img.qammunity.org/2023/formulas/mathematics/college/japfye82h6mooovzuq7zrkilu439vlchfb.png)
It is:
![GCF=15](https://img.qammunity.org/2023/formulas/mathematics/college/6k75h0q1393lk6cm45rvnuvk628z83iysz.png)
6. Factor the GCF of each group out:
![=x^2(x^{}+1)-8x(x+1)+15(x+1)](https://img.qammunity.org/2023/formulas/mathematics/college/p97ngj41vlvyrzz1m9dmyf8g2mgbsfrolu.png)
7. Notice that each expression is common in all the terms:
![x+1](https://img.qammunity.org/2023/formulas/mathematics/high-school/61mvujkpdw4mwfkus3vrhpdjg4xattij0r.png)
Then, you can factor it out:
![=(x^{}+1)(x^2-8x+15)](https://img.qammunity.org/2023/formulas/mathematics/college/vps3t4e9s2nqc3bktmxupo0xevm9d1xw5s.png)
8. In order to factor the Quadratic Polynomial in the second parentheses, you can find two numbers whose Sum is -8 and whose Product is 15. These are -3 and -5. Then, you get:
![=(x^{}+1)(x-3)(x-5)](https://img.qammunity.org/2023/formulas/mathematics/college/mylk9f2vwqwkej5i5cwwkqwlur8x9eyjd9.png)
Hence, the answer is: Option D.