152k views
1 vote
Use the given partition and sample points to approximate the definite integral off(x) = x2 + 4x + 6 on the indicated interval.

Use the given partition and sample points to approximate the definite integral off-example-1
User NargesooTv
by
7.6k points

1 Answer

2 votes

Solution:

Given:


f(x)=x^2+4x+6

To approximate the definite integral using given partition and sample points, we use the formula


\Sigma f(x_i)\Delta x_i

From the interval given,


\begin{gathered} -3<-2<-1<0<1,\text{ then } \\ \Delta x_i=1 \\ at\text{ every partition} \end{gathered}
\begin{gathered} \Sigma f(x_i)\Delta x_i=f(1)\Delta x_1+f(0)\Delta x_2+f(-1)\Delta x_3+f(-2)\Delta x_4 \\ \\ \sin ce\text{ }\Delta x_i=1,\text{ then} \\ \Sigma f(x_i)\Delta x_i=f(1)+f(0)+f(-1)+f(-2) \end{gathered}
\begin{gathered} f(x)=x^2+4x+6 \\ f(1)=1^2+4(1)+6=1+4+6=11 \\ f(0)=0^2+4(0)+6=0+0+6=6 \\ f(-1)=(-1)^2+4(-1)+6=1-4+6=3_{} \\ f(-2)=(-2)^2+4(-2)+6=4-8+6=2 \end{gathered}

Hence, the approximate value of the definite integral is;


\begin{gathered} \Sigma f(x_i)\Delta x_i=f(1)+f(0)+f(-1)+f(-2) \\ \Sigma f(x_i)\Delta x_i=11+6+3+2 \\ \Sigma f(x_i)\Delta x_i=22 \end{gathered}

Therefore, the approximate value of the definite integral is 22.

User Iksajotien
by
9.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories