Solution
The population standard deviation is given as
![\sigma=\sqrt[]{(\sum ^N_(i\mathop=1)(x_i-\mu)^2)/(N-1)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/t6gybkb77epqy11ogp2bvojigbass5edhr.png)
First, we calculate the mean;

Thus, the standard deviation is;
![\begin{gathered} \sigma^2==((148-140)^2+(133-140)^2+(136-140)^2+(152-140)^2+(140-140)^2+(143-140)^2+(129-140)^2+(139-140)^2)/(7) \\ \sigma^2=57.7 \\ \sigma=\sqrt[]{57.7} \\ \sigma=7.6 \end{gathered}]()
The confidence interval for standard deviation is given by;
[tex]s\sqrt[]{\frac{n-1}{\chi^2_{n-1,\frac{\alpha}{2}}}_{}}<\sigma
Option A is the correct option.