To find the area of the shaded region:
1. Find the area of the semicircle:
![\begin{gathered} A=(\pi *r^2)/(2) \\ \\ A=\frac{3.14*(8cm)\placeholder{⬚}^2}{2}=(3.14*64cm^2)/(2)=100.48cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/iozriiu2z4hqee2rbjca5wyhhlb0hs0s2e.png)
2. Find the area of the triangle:
the base of the triangle is the diameter of the semicircle (twice the radius)
![\begin{gathered} A=(1)/(2)b*h \\ \\ A=(1)/(2)(16cm)(8cm)=(128)/(2)cm^2=64cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/d20ckkdlqlkbs3a25uzo0ptwitluv70grx.png)
3. Subtract the area of the triangle from the area of the semicirle:
![A_(shaded)=100.48cm^2-64cm^2=36.48cm^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/r9ritb6duw307cmmd59orzyum5g13djicv.png)
Then, the area of the shaded region is 36.48 square centimeters