a.
In order to find the common ratio, we just need to divide a term by the term that comes before it.
So using the terms 20 and -5, we have:
![\text{ratio}=(20)/(-5)=-4](https://img.qammunity.org/2023/formulas/mathematics/college/oihccu9ffb0lwlystoivt5eu29it9qzekr.png)
b.
The recursive rule can be found with the formula:
![a_n=a_(n-1)\cdot q](https://img.qammunity.org/2023/formulas/mathematics/college/3o4nulzbrn677jml0gulfp2disvfctdso8.png)
Where an is the nth term and q is the ratio. So we have:
![a_n=a_(n-1)\cdot(-4)](https://img.qammunity.org/2023/formulas/mathematics/college/oow5bzrio1ph6kdub9rzfcs6zheuguggpz.png)
c.
The explicit rule can be written as:
![a_n=a_1\cdot q^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/rlg5kaxmt1mz5h3g1qfct43fvqd76l4l78.png)
Where an is the nth term, a1 is the first term and q is the ratio. So:
![a_n=-5\cdot(-4)^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/y07dc0r8t52ks1livapvqgoss3mwnid6ah.png)