Given: A quadratic equation
![f(x)=x^2-2x-15](https://img.qammunity.org/2023/formulas/mathematics/college/7a4wmy3aulb4fuaf512q1jder68qechzd8.png)
Required: To find the vertex, x-intercepts, y-intercept, and graph the given quadratic function.
Explanation: Comparing the given equation with general quadratic function
![f(x)=ax^2+bx+c\text{ }](https://img.qammunity.org/2023/formulas/mathematics/high-school/bh80zggn4wkarcoi4hrfujcl0u362t3256.png)
we get, a=1, b=-2, and c=-15. Now the x coordinate of the vertex of the quadratic function is
![x=-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/7gr846x3106wifbv8ib3mo7x3lghpti0f2.png)
Hence,
![x=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/xsb7940fuqxllob7pwpm2jsl9ruu78r3uv.png)
At x=1, f(x) is
![\begin{gathered} f(1)=(1)^2-2(1)-15 \\ =-16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/k5tvqd5w8q4olshtxna75pxe5gj6vdw1jz.png)
Hence the vertex of the given function is (1,-16). Now for getting the x-intercept we put f(x)=0, i.e.,
![\begin{gathered} x^2-2x-15=0 \\ (x-5)(x+3)=0 \\ x=5\text{ and} \\ x=-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/sa4ad4h7ed7m0nblw766f3j4q5e9e6bw8x.png)
Hence the x-intercepts are (5,0) and (-3,0). Similarly, for y-intercept, we put x=0 and find f(x) as follows
![\begin{gathered} f(0)=0^2-2(0)-15 \\ =-15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bebpztaw2wr7g1s10vxvxx334rk3ihka3v.png)
Hence y-intercept is (0,-15). Now using the vertex and intercepts to graph the given quadratic function is shown below.
Final Answer: b) Vertex=(1,-16)
c) x intercepts are (5,0) and (-3,0)
d) y intercepts is (0,-15)
e) The graph of f(x) is shown below.