Volume of the composite solid is the sum of the volume of the cylinder and volume of the hemisphere.
The radius of the cylinder is 12/2=6 cm
Height of the cylinder is 26 cm
Volume of the cylinder is given by
![V_1=\pi r^2h](https://img.qammunity.org/2023/formulas/mathematics/college/a1388xo89wbpnhdrvbilehus8u49qku39l.png)
Hence the volume is given by
![\begin{gathered} V_1=3.14*6*6*26 \\ =2939.04 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7y57ebnbhuxwl3yq2ptxxice2jd55qzlx5.png)
Now the volume of the hemisphere is
![V_2=(2)/(3)\pir^3](https://img.qammunity.org/2023/formulas/mathematics/college/oxsc2t93468g40q4xk7q62hodax1c66vax.png)
Hence the volume of the hemisphere is
![\begin{gathered} V_2=(2)/(3)*3.14*6*6*6 \\ =452.16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z62g2p9lg3j9nmfqtchpuewt9xlag0for5.png)
And the total volumeis
![V=2939.04+452.16=3391.2](https://img.qammunity.org/2023/formulas/mathematics/college/5png4tn71xiz7iju2wqtqm5hbza5sbbatg.png)