The question is given below as
![(3+4i)(3-i)](https://img.qammunity.org/2023/formulas/mathematics/college/xy6gsi462v33zsbociyr5c0motkiec0gfv.png)
Concept:
Apply the complex arithmetic rule
![\begin{gathered} (a+bi)(c+di) \\ =(ac-bd)+(ad+bc)i \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wjoff22rgt9qui0rp4zl717laopnfszn4h.png)
By comparing coefficient with the main question, we will have
![a=3,b=4,c=3,d=-1](https://img.qammunity.org/2023/formulas/mathematics/college/5t5vr7qvpfpkttnx6bg36z3g31c3dak018.png)
Step 1: Substitute the values in the arithmetic rule
![\begin{gathered} (a+bi)(c+di) \\ (ac-bd)+(ad+bc)i \\ (3*3)-(4*-1)+(3*-1)+(4*3)i \\ =(9+4)+(-3+12)i \\ =13+9i \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/onp7wcpvntpm6cusdnulzrvxa1q2mja6qm.png)
Alternatively,
Use the FOIL method
![\begin{gathered} (3+4i)(3-i) \\ 3(3-i)+4i(3-i) \\ =9-3i+12i-4i^2 \\ =9+9i-4i^2 \\ \text{note :} \\ i^2=-1 \\ =9+9i-4(-1) \\ =9+9i+4 \\ =9+4+9i \\ =13+9i \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cjqi0jy450t3gbc1huzm9e34pgtj07wk6s.png)
Hence,
The final answer is = 13 + 9i