Given:
![x+xy=2y](https://img.qammunity.org/2023/formulas/mathematics/college/rohibpx2ybrp751mgpjqlpho0d03am7yii.png)
You need to use Implicit Differentiation to determine the equation of a line tangent. In order to do this, you need follow these steps:
1. Derivate the function treating "y" as function of "x". Use these Derivative Rules:
- Power Rule:
![(d)/(dx)(nx^n)=nx^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/rushdg9uu7ii6w5r7h2dg9lyze4vvrl69q.png)
- Product Rule:
![(d)/(dx)(u(x)\cdot v(x))=u^(\prime)(x)^v(x)+v^(\prime)(x)u(x)](https://img.qammunity.org/2023/formulas/mathematics/college/xcp4sbc4l8t3g6fdapvcvq9yt0btbriy4t.png)
Then, you get:
![(x)^(\prime)+(xy)^(\prime)=(2y)^(\prime)](https://img.qammunity.org/2023/formulas/mathematics/college/qvgt12qnzjr646knm9pnn3fi9lf91rvowv.png)
![(1x^(1-1))^(\prime)+(x)^(\prime)(y)+(y)^(\prime)(x)=2y^(\prime)](https://img.qammunity.org/2023/formulas/mathematics/college/4i1k19ncslt3bd9cpkc1m4ha9y5v430enl.png)
![1+(1)(y)+xy^(\prime)=2y^(\prime)](https://img.qammunity.org/2023/formulas/mathematics/college/s6a31avy7sahubhjr1wc3sku5dvikywec0.png)
![1+y+xy^(\prime)=2y^(\prime)](https://img.qammunity.org/2023/formulas/mathematics/college/67ewu8leiu92pos9jf6osj5xlq79saya4c.png)
2. Solve for y':
![1+y=2y^(\prime)-xy^(\prime)](https://img.qammunity.org/2023/formulas/mathematics/college/9b2zgj8nui15otkaz0p47kxx579ral709g.png)
![1+y=y^(\prime)(2-x)](https://img.qammunity.org/2023/formulas/mathematics/college/bgy8xgs3472upr2jqa8ssh1u6cghcd1x3b.png)
![y^(\prime)=(1+y)/(2-x)](https://img.qammunity.org/2023/formulas/mathematics/college/9vi6q5n5xblht8pd1jd96ljny9azi26ybi.png)
![y^(\prime)=-(1+y)/(x-2)](https://img.qammunity.org/2023/formulas/mathematics/college/xw3cddrahx3n28ca3agxbel2g9rs103hm9.png)
3. Having the point:
![(3,2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/shs7djlzh90n6zn504jomfimr2mdsvo3bj.png)
You need to substitute its coordinate into the derivative of the function and evaluate, in order to find the slope of the line that is tangent to the given function:
![y^(\prime)=-(1+(2))/((3)-2)=-(3)/(1)=-3](https://img.qammunity.org/2023/formulas/mathematics/college/8vvahyi4zirl2ajf1cvg3abq7dpaafkrvc.png)
4. The Point-Slope Form of the equation of a line is:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
Where "m" is the slope and this is a point on the line:
![(x_1,y_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/x550ag71r3nlvmk4as4e3r7sboim1mls0a.png)
Substituting values, you get:
![y-2=-3(x-3)](https://img.qammunity.org/2023/formulas/mathematics/college/u00mkq3m2o5g00zgyhxv6xg6x0tff7qzld.png)
5. You can rewrite it in Slope-Intercept Form by solving for "y":
![y=-3x+9+2](https://img.qammunity.org/2023/formulas/mathematics/college/1lndx4trhs4dum4kqjvk0fsfuxi432osdl.png)
![y=-3x+11](https://img.qammunity.org/2023/formulas/mathematics/college/ggxzu9th4643hcpndpmyiokjfzc8k7u9c9.png)
Hence, the answer is:
![y=-3x+11](https://img.qammunity.org/2023/formulas/mathematics/college/ggxzu9th4643hcpndpmyiokjfzc8k7u9c9.png)