we have the equation
![2cos^2x=cos\left(x\right)](https://img.qammunity.org/2023/formulas/mathematics/college/vmwxpsi3jaq4xu82yx67mhqdrktw46w5vy.png)
Simplify
![\begin{gathered} (2cos^2x)/(cos(x))=(cos\left(x\right))/(xos(x)) \\ 2cos(x)=1 \\ cos(x)=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1ylav6ej6palfu94dftti24c9lhemhbciq.png)
Remember that
![cos((pi)/(3))=(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/w5adwi1ddardkqdihvlvt229qkfj4aaqdf.png)
the value of the cosine is positive
that means
the angle x lies on the first quadrant and IV quadrant
For the First quadrant x=pi/3 radians
For the IV quadrant
x=2pi-pi/3
x=5pi/3 radians
therefore
In the given interval for x
the solutions are
x=pi/3 and 5pi/3