1) Let's consider both triangles ABC and ADB:
Then the proportional sides between similar triangles is:
![(AB)/(AD)=(BC)/(BD)=(AC)/(AB)](https://img.qammunity.org/2023/formulas/mathematics/college/5di5ka1zbn5ywn284fv9vs3zkgv7egjouv.png)
2)Since we have that AD=9.3 and BD=15.7, using the pythagorean theorem we get the following:
![\begin{gathered} AB^2=AD^2+DB^2 \\ \Rightarrow AB^2=(9.3)^2+(15.7)^2=86.5+246.5=333 \\ \Rightarrow AB=\sqrt[]{333}=18.2 \\ AB=18.2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/knarlsszy5hqlpdhwnjga9kuhl4djy41ly.png)
Therefore, AB=18.2 ft
3)a)the best way to represent the length from A to C is with the pythagorean theorem:
![AC=\sqrt[]{AB^2+BC^2}](https://img.qammunity.org/2023/formulas/mathematics/college/dvee4i0xpc224rdsbc1yyt74z00mtb88r9.png)
b)The proportion to find the distance across the stream is the segment DC, then:
![(AD)/(BD)=(DB)/(DC)](https://img.qammunity.org/2023/formulas/mathematics/college/j68qryy9in56z5vp0791ievejl7hpnfeja.png)
c)We can find the length by using the values for AD, BD and DB that we previously got:
![\begin{gathered} AD=9.3 \\ BD=15.7 \\ \Rightarrow(9.3)/(15.7)=(15.7)/(DC) \\ \Rightarrow DC\cdot((9.3)/(15.7))=15.7 \\ \Rightarrow DC=(15.7)/(((9.3)/(15.7)))=26.5 \\ DC=26.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rxdj5p2jgt50w1gxqw8x8m4dmo1vb47109.png)
Finally, we have that the length across the stream is 26.5 ft