Answer:
2.87secs
Step-by-step explanation:
Given the expression for calculating the height reached by the ball expressed as;
![h(t)=70-10t-5t^2](https://img.qammunity.org/2023/formulas/mathematics/college/j9j9r8pbu7mw3mruuzvkdd3bxevzwrjkp6.png)
The ball will hit the ground when h(t) = 0.
Substituting into the expression given;
![\begin{gathered} 0=70-10t-5t^2 \\ \text{Rearrange;} \\ 5t^2+10t-70=0 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7k28wld86khcboeppf6ezgzobfguyqus3p.png)
Factorize the resulting equation and find the value of t
![\begin{gathered} t\text{ = }\frac{-10\pm\sqrt[]{10^2-4(5)(-70)}}{2(5)} \\ t=\frac{-10\pm\sqrt[]{100+1400}}{10} \\ t=\frac{-10\pm\sqrt[]{1500}}{10} \\ t=(-10\pm38.73)/(10) \\ t=(-10+38.73)/(10) \\ t=(28.73)/(10) \\ t=2.87\sec s \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/deu9vkkhyhos1satamuzygjf8mxxcmsxkl.png)
This means that it will take 2.87secs for the ball to hit the ground