79.8k views
4 votes
Simplify[(2x)^x(2x)^(2x)]^(1/x)

User Rli
by
8.5k points

1 Answer

1 vote

\mleft[\mleft(2x\mright)^x\mleft(2x\mright)^(2x)\mright]^{(1)/(x)}

We have the expression above

we will use two of the laws of exponents in order to simplify the expression


x^m\cdot x^n=x^(m+n)
(x^m)^n=x^(m\cdot n)

using these two laws we will have


\begin{gathered} \lbrack(2x)^x(2x)^(2x)\rbrack^{(1)/(x)}=\lbrack(2x)^(x+2x)\rbrack^{(1)/(x)}=\lbrack(2x)^(3x)\rbrack^{(1)/(x)}=(2x)^{3x\cdot(1)/(x)}=(2x)^3=2^3x^3 \\ =8x^3 \end{gathered}

the simplification is


\lbrack(2x)^x(2x)^(2x)\rbrack^{(1)/(x)}=8x^3

User JamesWillett
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories