Given:
The value of each resistance in parallel combination is,
![15.0\text{ ohm}](https://img.qammunity.org/2023/formulas/physics/college/4bidkapo6mo8i69oc30wvwx9ciktuv29lo.png)
The value of the resistance in series with the parallel resistances is,
![10.0\text{ ohm}](https://img.qammunity.org/2023/formulas/physics/college/alhr5gceippsynlrsockhdmguxz9g9o6b1.png)
The potential drop across the battery is,
![45.0\text{ V}](https://img.qammunity.org/2023/formulas/physics/college/mn8rzz2i2lkr3yek4zeekjdsrbbpzccv5z.png)
To find:
The voltage drop across each 15.0 ohm resistance
Step-by-step explanation:
The value of the equivalent resistance of the three parallel resistances is,
![\begin{gathered} (1)/(R)=(1)/(15.0)+(1)/(15.0)+(1)/(15.0) \\ (1)/(R)=(3)/(15.0) \\ R=(15.0)/(3) \\ R=5.0\text{ ohm} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/mo8qrswrqvwmse3gpuj9cs5abpm3h3aoam.png)
The net resistance of the circuit is,
![\begin{gathered} R_(net)=10.0+5.0 \\ =15.0\text{ ohm} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/7q5pczsqnzymg7jkzssjqts56g65nszh3u.png)
The circuit diagram is like this:
The current in the circuit is,
![\begin{gathered} I=(V)/(R_(net)) \\ =(45.0)/(15.0) \\ =3.0\text{ A} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/9p5fkzci9cmg3w76koy5mtkw58xarhtp00.png)
The potential drop across 10.0 ohm is,
![\begin{gathered} I*10.0 \\ =3.0*10.0 \\ =30.0\text{ V} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/jzh7uuo0fw0rp9ersbpmd8rrr221tpsak9.png)
The potential drop across each of the 15.0 ohm resistance will be the same as the resistances are parallel.
So, the potential drop across each 15.0 ohm is,
![\begin{gathered} 45.0-30.0 \\ =15.0\text{ V} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/jskckfudax5h1xtmqzhm6b45e5ya5q1kno.png)
Hence, the required potential drop is 15.0 V.