Given:
a.) A cone with a slant height of 8 and a radius of 3.
To be able to get the volume of the cone with only the slant height and radius given, we use the following formula:
![\text{ Volume = }(1)/(3)\pi r^2\sqrt[]{l^2-r^2}](https://img.qammunity.org/2023/formulas/mathematics/college/nimz60a2qdc1gnm583uzyb133opnv0t6pg.png)
Where,
r = radius
l = slant height
We get,
![\text{ Volume = }(1)/(3)\pi r^2\sqrt[]{l^2-r^2}](https://img.qammunity.org/2023/formulas/mathematics/college/nimz60a2qdc1gnm583uzyb133opnv0t6pg.png)
![\text{ = }(1)/(3)\pi(3)^2\sqrt[]{(8)^2-(3)^2_{}}](https://img.qammunity.org/2023/formulas/mathematics/college/1k4cy3r787oc8ljn7z5550fym7hlfo3fzc.png)
![\text{ = }(9)/(3)\pi^{}\sqrt[]{64-9^{}_{}}](https://img.qammunity.org/2023/formulas/mathematics/college/7qiz83ro8dllh53ome2gt9hhgwcxuzas3c.png)
![\text{ = }3\pi^{}\sqrt[]{55^{}_{}}](https://img.qammunity.org/2023/formulas/mathematics/college/z0vdsdcy5esdbxuwxsxk0snux9hth12b6p.png)
![\text{ = 3}\sqrt[]{55}\pi\text{ or 69.89602405387 }\approx\text{ 69.90}](https://img.qammunity.org/2023/formulas/mathematics/college/u1z33bvkwv86qsicuu31cgz242x78c65r9.png)
Therefore, the volume of the cone is 3√55π or 69.90.