SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the standard form for slope-intercept form for an equation of a line
![\begin{gathered} y=mx+b \\ m\text{ is the slope and b is the y-intercept} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f1c3eugvnw2a20rxq1rrre4wep9xxcaq20.png)
STEP 2: Write the first given equation
![3-(5y-x)/(2)=2x+2](https://img.qammunity.org/2023/formulas/mathematics/college/ixj6wwy6o71bi8tdb3a9qs97zgpw1wg94g.png)
STEP 3: Simplify further to get the slope intercept form
![\begin{gathered} \mathrm{Subtract\:}3\mathrm{\:from\:both\:sides} \\ 3-(5y-x)/(2)-3=2x+2-3 \\ -(5y-x)/(2)=2x-1 \\ \mathrm{Multiply\:both\:sides\:by\:}2 \\ 2\left(-(5y-x)/(2)\right)=2\cdot \:2x-2\cdot \:1 \\ -5y+x=4x-2 \\ 5y+x-x=4x-2-x \\ -5y=3x-2 \\ \mathrm{Divide\:both\:sides\:by\:}-5 \\ (-5y)/(-5)=(3x)/(-5)-(2)/(-5) \\ y=-(3x-2)/(5) \\ \\ Putting\text{ ina slope-intercept form will give:} \\ y=-(3x)/(5)+(2)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z9b90wvewqtytslkg9blz0eg6sj3qx2iwd.png)
Hence, the answer is given as:
![y=-(3)/(5)x+(2)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/fpchfjv1qj8bwj4n6an8fbsbjsjejfn3h0.png)