Answer:
![C=17x^2+(11662)/(x)](https://img.qammunity.org/2023/formulas/mathematics/college/pmvfw7wladuse6uv3s4vl80txnqy6wh7ln.png)
Given that:
Volume of the storage shed = 833 cubic feet
Cost of the concrete for the base per square foot = $8
Cost of concrete for the root per square foot = $9
Cost of the material for the sides per square foot = $3.50
Let x be the length of the side of the square and h be height of the shed.
The formula to calculate the volume is
V = Bh
where B is the base area.
Since the base is a square with side 'x',
![B=x^2](https://img.qammunity.org/2023/formulas/mathematics/college/wocpk6cjwzz2fk34x9cn0k8yglcevbyaaz.png)
Substitute the given values into the formula of V.
![\begin{gathered} 833=x^2\cdot h \\ =x^2h \\ \Rightarrow h=(833)/(x^2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f02a67py1o8otxs0h9rb44uenjzoseptzs.png)
The base will have the same area with the roof.
Area of the roof = Base area
![=x^2](https://img.qammunity.org/2023/formulas/mathematics/college/vv5ss51uwsj6vuj09yt7aniscvl3w8a1o9.png)
Cost to construct base
![=8x^2](https://img.qammunity.org/2023/formulas/mathematics/college/q2rir7c8j9nhdbwhddszum3q2klip9y0mj.png)
Cost to construct the roof
![=9x^2](https://img.qammunity.org/2023/formulas/mathematics/college/eqc7yhkrmis30bj2rgxl35ocmqfs5yi8kx.png)
Area of one side = xh
Cost to construct one side = 3.5xh
Cost to construct 4 sides of the box
![\begin{gathered} =4(3.5xh) \\ =14xh \\ =14x\cdot(833)/(x^2) \\ =(11662)/(x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/447vhvnrzbkxsk5ipbr575q8tm7zvw8w0o.png)
The total cost is the sum of these three costs. So, the objective function is
![\begin{gathered} C=8x^2+9x^2+(11662)/(x) \\ =17x^2+(11662)/(x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s7e7tcr35mvhxwiguvqrqukf1r70uzt2ue.png)
The dimension for the most economical cost will occur when dC/dx = 0. Then
![\begin{gathered} 34x-(11662)/(x^2)=0 \\ x^3=(11662)/(34) \\ =343 \\ x=7\text{ ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4c6fc9xhn1o1k49v9cflwubl8mg2pqn12c.png)
The length of side of the base is 7 feet.
Substitute the value of x into the equation of h.
![\begin{gathered} h=(833)/(7^2) \\ =17\text{ ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pabpuf55bt3s4x58oibiijpzkmturq8bl7.png)
The height of the storage shed is 17 feet.