Vector representation:
Let vector A be;
![\vec{A}=(-6\hat{i})\text{ yards}](https://img.qammunity.org/2023/formulas/physics/college/mahggf8a39n0pnn1dxpmcm1ga7tjalmk6b.png)
Vector B be;
![\vec{B}=(-8\hat{j})\text{ yards}](https://img.qammunity.org/2023/formulas/physics/college/ska50yoccbyxkylkycntu8hhian1tel39b.png)
Vector C be;
![\vec{C}=(46\hat{i})\text{ yards}](https://img.qammunity.org/2023/formulas/physics/college/5ogjq6e1mys70dbav81f4ab2hfarutso5a.png)
The resultant displacement vector R is given as,
![\begin{gathered} \vec{R}=\vec{A}+\vec{B}+\vec{C} \\ =(-6\hat{i}-8\hat{j}+46\hat{i})\text{ yards} \\ =(40\hat{i}-8\hat{j})\text{ yards} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4ow28a1934q8jtfvfm2a5z914naib1hj80.png)
The magnitude of the resultant displacement vector is given as,
![\begin{gathered} \lvert\vec{R}\rvert=\sqrt[]{(40)^2+(-8)^2} \\ \approx40.79\text{ yards} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/whl4819sxj6t2aoic08b5pesvmp7v9fci4.png)
Therefore, the magnitude of the football's resultant displacement is 40.79 yards.