234k views
12 votes
Let A=/2,3,5/and B=/6,10,15/and relation :A-B FIND THE DOMAIN AND RANGE

User Ifeanyi
by
7.8k points

1 Answer

10 votes

Answer:R = {(4, 5); (4, 7); (4, 9); (6, 7); (6, 9), (8, 9) (2, 5) (2, 7) (2, 9)}

Therefore, Domain (R) = {2, 4, 6, 8} and Range (R) = {1, 5, 7, 9}

Solved examples on domain and range of a relation:

1. In the given ordered pair (4, 6); (8, 4); (4, 4); (9, 11); (6, 3); (3, 0); (2, 3) find the following relations. Also, find the domain and range.

(a) Is two less than

(b) Is less than

(c) Is greater than

(d) Is equal to

Solution:

(a) R₁ is the set of all ordered pairs whose 1ˢᵗ component is two less than the 2ⁿᵈ component.

Therefore, R₁ = {(4, 6); (9, 11)}

Also, Domain (R₁) = Set of all first components of R₁ = {4, 9} and Range (R₂) = Set of all second components of R₂ = {6, 11}

(b) R₂ is the set of all ordered pairs whose 1ˢᵗ component is less than the second component.

Therefore, R₂ = {(4, 6); (9, 11); (2, 3)}.

Also, Domain (R₂) = {4, 9, 2} and Range (R₂) = {6, 11, 3}

(c) R₃ is the set of all ordered pairs whose 1ˢᵗ component is greater than the second component.

Therefore, R₃ = {(8, 4); (6, 3); (3, 0)}

Also, Domain (R₃) = {8, 6, 3} and Range (R₃) = {4, 3, 0}

(d) R₄ is the set of all ordered pairs whose 1ˢᵗ component is equal to the second component.

Therefore, R₄ = {(3, 3)}

Also, Domain (R) = {3} and Range (R) = {3}

2. Let A = {2, 3, 4, 5} and B = {8, 9, 10, 11}.

Let R be the relation ‘is factor of’ from A to B.

(a) Write R in the roster form. Also, find Domain and Range of R.

(b) Draw an arrow diagram to represent the relation.

Solution:

(a) Clearly, R consists of elements (a, b) where a is a factor of b.

Therefore, Relation (R) in the roster form is R = {(2, 8); (2, 10); (3, 9); (4, 8), (5, 10)}

Therefore, Domain (R) = Set of all first components of R = {2, 3, 4, 5} and Range (R) = Set of all second components of R = {8, 10, 9}

(b) The arrow diagram representing R is as follows:

Domain and Range of R

2Save

3. The arrow diagram shows the relation (R) from set A to set B. Write this relation in the roster form.

Arrow Diagram

2Save

Solution:

Clearly, R consists of elements (a, b), such that ‘a’ is square of ‘b’

i.e., a = b².

So, in roster form R = {(9, 3); (9, -3); (4, 2); (4, -2); (16, 4); (16, -4)}

Worked-out problems on domain and range of a relation:

4. Let A = {1, 2, 3, 4, 5} and B = {p, q, r, s}. Let R be a relation from A in B defined by

R = {1, p}, (1, r), (3, p), (4, q), (5, s), (3, p)}

Find domain and range of R.

Solution:

Given R = {(1, p), (1, r), (4, q), (5, s)}

Domain of R = set of first components of all elements of R = {1, 3, 4, 5}

Range of R = set of second components of all elements of R = {p, r, q, s}

5. Determine the domain and range of the relation R defined by

R = {x + 2, x + 3} : x ∈ {0, 1, 2, 3, 4, 5}

Solution:

Since, x = {0, 1, 2, 3, 4, 5}

Therefore,

x = 0 ⇒ x + 2 = 0 + 2 = 2 and x + 3 = 0 + 3 = 3

x = 1 ⇒ x + 2 = 1 + 2 = 3 and x + 3 = 1 + 3 = 4

x = 2 ⇒ x + 2 = 2 + 2 = 4 and x + 3 = 2 + 3 = 5

x = 3 ⇒ x + 2 = 3 + 2 = 5 and x + 3 = 3 + 3 = 6

x = 4 ⇒ x + 2 = 4 + 2 = 6 and x + 3 = 4 + 3 = 7

x = 5 ⇒ x + 2 = 5 + 2 = 7 and x + 3 = 5 + 3 = 8

Hence, R = {(2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)}

Therefore, Domain of R = {a : (a, b) ∈R} = Set of first components of all ordered pair belonging to R.

Therefore, Domain of R = {2, 3, 4, 5, 6, 7}

Range of R = {b : (a, b) ∈ R} = Set of second components of all ordered pairs belonging to R.

Therefore, Range of R = {3, 4, 5, 6, 7, 8}

6. Let A = {3, 4, 5, 6, 7, 8}. Define a relation R from A to A by

R = {(x, y) : y = x - 1}.

• Depict this relation using an arrow diagram.

• Write down the domain and range of R.

roster form

Solution:

By definition of relation

R = {(4, 3) (5, 4) (6, 5)}

The corresponding arrow diagram is shown.

We can see that domain = {4, 5, 6} and Range = {3, 4, 5}

7. The adjoining figure shows a relation between the sets A and B.

Write this relation in

• Set builder form

• Roster form

• Find the domain and range

Set Builder Form

2Save

Solution:

We observe that the relation R is 'a’ is the square of ‘b'.

In set builder form R = {(a, b) : a is the square of b, a ∈ A, b ∈ B}

In roster form R = {(4, 2) (4, -2)(9, 3) (9, -3)}

Therefore, Domain of R = {4, 9}

Range of R = {2, -2, 3, -3}

Note: The element 1 is not related to any element in set A.

Explanation:

User FatalFlaw
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories