Interest rate of the account is 4%
Step-by-step explanation:
initial amount = $3313
time = 20 years
Balance = future value = $7373.22
rate = ?
n = number of times compounded
n = continuously
The formula for continuous compounding:
![P=P_0e^(rt)](https://img.qammunity.org/2023/formulas/mathematics/college/mr87duken6r31rnjh40asult470x3gyx8c.png)
![\begin{gathered} P\text{ = amount after a certain time }=\text{ \$7373.22} \\ P_0\text{ = \$3313, t = 20 , r = ?} \\ \text{Substitute in the formula:} \\ \text{7373.22 = 3313e}^(r*20) \\ \text{7373.22 = 3313e}^(20r) \\ \\ \text{divide both sides by 3313:} \\ \frac{\text{7373.22}}{3313}\text{ = }\frac{\text{3313e}^(20r)}{3313} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8uau7i2v5yu19ghz5k302gnpehzxtsohx3.png)
![\begin{gathered} \frac{\text{7373.22}}{3313}\text{ = e}^(20r) \\ 2.2255\text{ = e}^(20r) \\ \text{Taking natural log of both sides:} \\ \ln \text{ 2.2255 = ln}(\text{e}^(20r)) \\ 0.8\text{ = 20r} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ivbfvrwz471625b439i5hhv6tnj3ue73u7.png)
![\begin{gathered} \text{divide both sides by 20:} \\ (0.8)/(20)\text{ = }(20r)/(20) \\ r\text{ = 0.04} \\ \\ In\text{ interest rate in percent = 0.04 }*\text{ 100\% } \\ \text{interest rate in percent = 4\%} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z1t8gkjyfijk8lsksozwj8hbmcxpkxsfaa.png)
Interest rate of the account is 4%