Given:
Count in bacteria culture after 20 minutes = 200
Count in bacteria culture after 40 minutes = 1900
Required: Find the initial size, doubling period, population after 60 minutes and time at which the population will reach 11000
Explanation:
The exponential growth can be modeled by
![A=A_0e^(kt)](https://img.qammunity.org/2023/formulas/mathematics/college/o3jf8xexsswzfqsndgfxbp3xxz2elg118i.png)
where A0 is the initial size and k is the growth rate.
Plug the condition A(20) = 200.
![\begin{gathered} 200=A_0e^(k\cdot20) \\ =A_0e^(20k) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tq2q50cj5zovfe89wmpul1hnzoarnz0wrt.png)
Plug the condition A(40) = 1900.
![\begin{gathered} 1900=A_0e^(k\cdot40) \\ =A_0e^(40k) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mb9j5qjostb861c32ilmobass3c6e3jgch.png)
Divide both of them.
![\begin{gathered} (1900)/(200)=(A_0e^(40k))/(A_0e^(20k))=e^(20k) \\ 20k=\ln(9.5) \\ k=(\ln(9.5))/(20) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/18ems4od8nb3efde7lf439k9ai47u71ifo.png)
Thus,
![A=A_0e^{(\ln(9.5))/(20)t}](https://img.qammunity.org/2023/formulas/mathematics/college/r85n8hirobvldm9424enxulpp13nkuqdm0.png)
Substitute A(20) = 200 to find the initial count.
![\begin{gathered} 200=A_0e^{(\ln(9.5))/(20)\cdot20} \\ =9.5A_0 \\ A_0=(200)/(9.5)\approx21 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3mosl8ix6kqb19hbmar2bsxp9uwwnn6h9u.png)
Thus,
![A=21e^{(\ln(9.5))/(20)t}](https://img.qammunity.org/2023/formulas/mathematics/college/yfpydhdm3s55lk76ehc0npyty09t9cbyg7.png)
To find the doubling, find t at which A(t) = 42.
![\begin{gathered} 42=21e^{(ln(9.5))/(20)t} \\ 2=e^{(ln(9.5))/(20)t} \\ (\ln(9.5))/(20)t=\ln(2) \\ t=(\ln(2)\cdot20)/(\ln(9.5)) \\ =6.158 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xj2t895blrvhkyqik43tjwph14l4992cbv.png)
The doubling time is 6.158 minutes.
To find the population after 60 minutes, substitute 60 for t into A(t).
![\begin{gathered} A=21e^{(\ln(9.5))/(20)\cdot60} \\ \approx18005 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k624kcw7ojj57zmol6wm3ctrmx1o4vqcbz.png)
The count of bacteria after 60 minutes is 18005.
To find the time required for the culture of 11000, find t at which A(t) = 11000.
![\begin{gathered} 21e^{(\ln(9.5))/(20)t}=11000 \\ e^{(\ln(9.5))/(20)t}=523.81 \\ (\ln(9.5))/(20)t=6.261 \\ t=55.622 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u26dta31xqnb6wz5np3kwymrs2k81sv7c5.png)
The count of bacteria will reach 11000 in 55.622 minutes.
Final Answer:
Initial count = 21
The doubling time is 6.158 minutes.
The count of bacteria after 60 minutes is 18005.
The count of bacteria will reach 11000 in 55.622 minutes.