Area of an trapezoidal is express as :
![Area\text{ = }\frac{Sum\text{ of Parallel sides}}{2}* Height\text{ of trapezoid}](https://img.qammunity.org/2023/formulas/mathematics/college/hrdm5i97lugcxe6zeievzljrknwhp9eb7x.png)
So, to find the height of trapezium we draw a perpendicular from J to the base line LK and a perpendicular from I to the base line LK such that the MN= IJ
So, We have two right triangle JNK and IML
Apply Pythogaras in any one of the right triangle and find the length of perpendicular
In triangle JNK
![\begin{gathered} \text{From Pythagoras ,} \\ \text{Hypotenuse }^2+Perpendicular^2_{}+Base^2 \\ JK^2=JN^2+NK^2 \\ \text{Substitute the valus and solve for JN,} \\ 5^2=JN^2+4^2 \\ JN^2=25-16 \\ JN^2=9 \\ JN=3 \\ \text{ So, The perpendicular of triangle JN is 3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yu4v8yw62r9w9secxi6kn1z8ilvkdfn7bg.png)
Since, the perpendicular JN is also the height of trapezium,
Substitute the values
Height JN =3
Parallel Sides IJ = 8 and LK = 16
So, the Area of Trapezium will be
![\begin{gathered} \text{Area of trapezium IJKL =}\frac{Sum\text{ of parallel Sides}}{2}* Height \\ \text{Area of trapezium IJKL =}\frac{IJ\text{ +LK}}{2}* JN \\ \text{Area of trapezium IJKL =}(8+16)/(2)*3 \\ \text{Area of trapezium IJKL =}(24)/(2)*3 \\ \text{Area of trapezium IJKL =12}*3 \\ \text{Area of trapezium IJKL =}36cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w7pphbq2xwy78afuvvn8801mahpwrc5czy.png)
Answer : B) 36 cm²