Given,
The measure of base of triangle is 20 cm.
The measure of altitude of the triangle is 12 cm.
The expression of area of the triangle is,
![A=(1)/(2)* base*\text{altitude}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6xsfmyg2k2yvd07ky2d4npmpsiveqt0v02.png)
Substituting the values in the expression then,
![\begin{gathered} A=(1)/(2)*20*\text{1}2 \\ A=10*\text{1}2 \\ A=120cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jdth0c2chk7qmxvppfydp6bm3ngdmknzeh.png)
The area of the triangle is 120 cm^2.
Consider,
The third side of the triangle is 2x cm.
The semiperimeter of the triangle is,
![S=(20+12+2x)/(2)=16+x](https://img.qammunity.org/2023/formulas/mathematics/high-school/t1xolec1q12pestvz836rjuaggfbxn9brq.png)
Area of triangle,
![\begin{gathered} A=\sqrt[]{(16+x)(16+x-12)(16+x-20)(16+x-x)} \\ A=\sqrt[]{(16+x)(x+4)(x-4)16} \\ A=\sqrt[]{(256+16x)(x^2-16)} \\ A=\sqrt[]{256x^2+16x^3-256x-4096} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qhpfgkctnvseg40xpmzipkc5abgt758gym.png)
Equation both area then,
![\begin{gathered} 120=\sqrt[]{16x^3+256x^2-256x-4096} \\ 14400=16x^3+256x^2-256x-4096 \\ (18496)/(16)=x^3+16x^2-16x \\ x^3+16x^2-16x-1156=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/35dvg14e2eidwvhw54rzthbqe1eu9hlfuf.png)
After solving this expression, the value of x is 7.38.
The third side of the triangle is,
![2x=2*7.38=](https://img.qammunity.org/2023/formulas/mathematics/high-school/9phjc5xj1tiv0tk5r7itxmnn04gqoo7nz5.png)