The expeted value of a single ticket is the sum of the value of all probabilities. In this case the probability of winning is:
![(1)/(6000)](https://img.qammunity.org/2023/formulas/mathematics/college/sv0jrazn9mzqrryf38kynvs2cg80wbtxct.png)
The gain if you win is $2598.
The probability of lossing is:
![(5999)/(6000)](https://img.qammunity.org/2023/formulas/mathematics/college/aj7f70qi39gjx7qfijpclq5s0syvcvoija.png)
the loss if you lose is $2
The expected value of a single tiket is:
![2598\cdot(1)/(6000)+(-2)\cdot(5999)/(6000)](https://img.qammunity.org/2023/formulas/mathematics/college/ahqzer201i1dvsagnuxos6ghd68u04u938.png)
![(2598-11998)/(6000)](https://img.qammunity.org/2023/formulas/mathematics/college/j2nhxutm3gvuuj0ujtfuni3lynuzv6fbtl.png)
![-1.566666](https://img.qammunity.org/2023/formulas/mathematics/college/omxnrbx0bfvx8yo1w2smg95neyrygp0sjy.png)