We have to simplify the next given expression:
![(m^2b^4r^3)/(r^4b^4m)](https://img.qammunity.org/2023/formulas/mathematics/college/5u9odcp5gxzkhiyy22lzkun444fjp315iz.png)
First, we can cancel the common terms b⁴/b⁴ = 1
Then:
![(m^2r^3)/(r^4m)](https://img.qammunity.org/2023/formulas/mathematics/college/a6ea6b7nq6670dgl3dhhtfx06l4ep7qj6m.png)
Now, we need to use the next exponents property:
![(a^m)/(a^n)=a^(m-n)](https://img.qammunity.org/2023/formulas/mathematics/college/tkw22627qdyqtag05ybvl5ig788h7k4xhu.png)
For m:
![(m^2)/(m)=m^(2-1)=m](https://img.qammunity.org/2023/formulas/mathematics/college/g432m9ija9fdpx9wte2gkkdmblbfstuwwd.png)
Therefore:
![(mr^3)/(r^4)](https://img.qammunity.org/2023/formulas/mathematics/college/htt3g0uixymedwgpmyclcnqb83r5sj4a2t.png)
For r:
![(r^3)/(r^4)=r^(3-4)=r^(-1)](https://img.qammunity.org/2023/formulas/mathematics/college/eelsoztlntxhi9ftn4gtkaxnuk1tlw0bhj.png)
Use for r the next exponent property:
![a^(-m)=(1)/(a^m)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wdvvh5b0umih7jfym61n9o9wpvicmm6q8y.png)
Hence, we have the next simplified expression:
![m\cdot(1)/(r)](https://img.qammunity.org/2023/formulas/mathematics/college/w0l4zhwaa5ofwnwuuxvl6eol9j2cbth8s1.png)
![=(m)/(r)](https://img.qammunity.org/2023/formulas/mathematics/college/zhm7aufb6sjvy1e38c8hd31emupx0asvyz.png)