Given:
Area = 5.0 cm²
Uniform charges = +8.4 pC or -8.4 pC
Perendicular distance = 1.0 mm
Let's find the potential difference across the metallic plates.
To find the potential difference, apply the formula:
![V=(Q)/(C)](https://img.qammunity.org/2023/formulas/physics/college/pm57wrn9hjzte1c59sd0u2yruukgeo0e2w.png)
Where:
V is the potential difference
Q is the charge = 8.4 pC
C is the capacitance.
To find C, apply the formula:
![\begin{gathered} C=(E_oA)/(D) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ctp9k1hwigdf5tuswu302jrslwm8e3clfv.png)
Where:
Eo = 8.85 x 10⁻¹² f/m
A is the area
D is the distance.
Thus, we have:
![\begin{gathered} C=((8.85*10^(-12))(5.0*10^(-4)))/(1.0*10^(-3)) \\ \\ C=4.425*10^(-12)\text{ F} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/r7ouswwjuonkiof055asftm071bqqkcryc.png)
Now, to find the potential difference, we have:
![\begin{gathered} V=(Q)/(C) \\ \\ V=(8.4*10^(-12))/(4.425*10^(-12)) \\ \\ V=1.89\text{ V }\approx1.9\text{ V} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/s1n0lgkwak2w5s1x1gm12ipgo19ey2v10o.png)
The potential difference across the metallic plates is 1.9 volts
ANSWER:
![1.9\text{ V}](https://img.qammunity.org/2023/formulas/physics/college/tya9h8ge7pzseh4fhsf91w7wufwes11xg8.png)