Notice that if a point (a,b) is on the terminal side of θ, the following triangle is formed:
Remember then, that the length of the hypotenuse of that triangle is given by th Pythagorean Theorem:
![c=\sqrt[]{a^2+b^2}](https://img.qammunity.org/2023/formulas/mathematics/college/6uwqakmkjq6nua21bpopztkrf20jt2flji.png)
Remember also the definitions for sinθ, secθ and tanθ:

In this case, a=-5 and b=-2. Find c:
![\begin{gathered} c=\sqrt[]{(-5)^2+(-2)^2} \\ =\sqrt[]{25+4} \\ =\sqrt[]{29} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fal2e8pgqrqtznj3k71cwzyu3kjg6fxlio.png)
Substitute the values for a, b and c to find sinθ, secθ and tanθ:
![\begin{gathered} \sin \theta=-\frac{2}{\sqrt[]{29}}=-\frac{2\cdot\sqrt[]{29}}{29} \\ \sec \theta=-\frac{\sqrt[]{29}}{5} \\ \tan \theta=(-2)/(-5)=(2)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c0hr0iv5ztm6jontlzzrxiilowz6et3fe9.png)
Therefore, the answers are:
![\begin{gathered} \sin \theta=-\frac{2\cdot\sqrt[]{29}}{29} \\ \sec \theta=-\frac{\sqrt[]{29}}{5} \\ \tan \theta=(2)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pdfuvn9cm6h19pkc9kuja7ilvv5w31hjhs.png)