the arc length of AB is 8
Step-by-step explanation
the length of arc is given by:
![\begin{gathered} arc=(\theta)/(360)\cdot2\pi r \\ when\text{ }\theta\text{ is measured in degr}ees \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jd6o5agbgzamimlgd0q5i6a4nkhzm1675q.png)
and the circumference of a circle is given by
![\begin{gathered} C=2\pi r \\ \text{if r (radius)is isolated} \\ (C)/(2\pi)=r \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gsrs37vo9fcf16zboichr1arwmbws8fuze.png)
so
Step 1
find the radius of the circle
![\begin{gathered} let \\ \text{Circumference}=\text{ C=32} \\ \text{now , replace in the equation that relates C and r} \\ (C)/(2\pi)=r \\ r=(C)/(2\pi) \\ r=(32)/(2\pi) \\ r=5.09 \\ \text{hence, the radius of the circle is 5.09 } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nsympyyavpst55p8t94plm878vhavkcfs5.png)
Step 2
Now, let's find the arc length
let
![\begin{gathered} \text{radius}=\text{ 5.09} \\ \text{angle}=90\text{ \degree } \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2z15dj71zxhvxe51i6lhhzaxf0usjqyjda.png)
now, let's replace in teh formula for the arc length
![\begin{gathered} arc=(\theta)/(360)\cdot2\pi r \\ arc=(90)/(360)\cdot2\pi\cdot5.09 \\ \text{arc l=}(1)/(4)\cdot10.18\pi \\ \text{arc l=}8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f30zo0e6qrq746byyaptwbg4sjy6pm4b2a.png)
therefore, the arc length of AB is 8
I hope this helps you