46.6k views
0 votes
A 500 mL gas sample is collected over water at a pressure of 740mmHg and 25°C. What is the volume of the dry gas at STP? (STP = 1 atm and 0°C) Vapor pressure at 25° of H2O equals 24mmHg.

User Karine
by
3.5k points

2 Answers

2 votes

Answer:

1) List the known and unknown quantities.

Sample: gas.

Volume: 500 mL.

Pressure: 740 mmHg

Temperature: 25 ºC.

Vapor pressure at 25 ºC: 24 mmHg.

2) Pressure of the gas.

The pressure of the gas is 716 mmHg

3) Moles of gas

3.1- List the known quantities.

Volume: 500 mL.

Temperature: 25 ºC.

Pressure: 716 mmHg.

Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1).

3.2- Set the equation.

3.3- Convert the units of the volume, the temperature, and the pressure.

Volume.

1 L = 1000 mL

Temperature.

Pressure

1 atm = 760 mmHg

3.4- Plug in the know quantities in the ideal gas equation.

3.5- Solve for n (moles).

Divide both sides by (0.082057 L * atm * K^(-1) * mol^(-1)) * (298.15 K)

4) Dry volume at STP

STP conditions are

Temperature: 273 K

Pressure: 1 atm.

At STP conditions 1 mol of a gas occuppies 22.4 L. We can use this as a conversion factor.

1 mol gas = 22.4 L

The volume of the dry gas at STP is 0.432 L.

Step-by-step explanation:

User Jruzafa
by
4.0k points
5 votes

1) List the known and unknown quantities.

Sample: gas.

Volume: 500 mL.

Pressure: 740 mmHg

Temperature: 25 ºC.

Vapor pressure at 25 ºC: 24 mmHg.

2) Pressure of the gas.


P_(gas)=P_(atm)-P_{water\text{ }vapor}
P_(gas)=740\text{ }mmHg-24\text{ }mmHg
P_(gas)=716\text{ }mmHg

The pressure of the gas is 716 mmHg

3) Moles of gas

3.1- List the known quantities.

Volume: 500 mL.

Temperature: 25 ºC.

Pressure: 716 mmHg.

Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1).

3.2- Set the equation.


PV=nRT

3.3- Convert the units of the volume, the temperature, and the pressure.

Volume.

1 L = 1000 mL


L=500\text{ }mL*\frac{1\text{ }L}{1000\text{ }mL}=0.500\text{ }L

Temperature.


K=25\text{ }ºC+273.15\text{ }K
K=298.15\text{ }K

Pressure

1 atm = 760 mmHg


atm=716\text{ }mmHg*\frac{1\text{ }atm}{760\text{ }mmHg}=0.942\text{ }atm

3.4- Plug in the know quantities in the ideal gas equation.


(0.942\text{ }atm)(0.500\text{ }L)=n*(0.082057\text{ }L*atm*K^(-1)*mol^(-1))(298.15\text{ }K)

3.5- Solve for n (moles).

Divide both sides by (0.082057 L * atm * K^(-1) * mol^(-1)) * (298.15 K)


\frac{(0.942atm)(0.500L)}{(0.082057\text{ }L*atm*K^(-1)mol^(-1))(298.15K)}=\frac{n(0.082057\text{ }L*atm*K^(-1)mol^(-1))(298.15K)}{(0.082057\text{ }L*atm*K^(-1)mol^(-1))(298.15K)}
n=((0.942atm)(0.500L))/((0.082057L*atm*K^(-1)*mol^(-1))(298.15K))=
n=0.0193\text{ }mol

4) Dry volume at STP

STP conditions are

Temperature: 273 K

Pressure: 1 atm.

At STP conditions 1 mol of a gas occuppies 22.4 L. We can use this as a conversion factor.

1 mol gas = 22.4 L


V=0.0193\text{ }mol\text{ }gas*\frac{22.4\text{ }L}{1\text{ }mol\text{ }gas}=0.432\text{ }L

The volume of the dry gas at STP is 0.432 L.

.

User Kenny Thompson
by
3.7k points