To determine which transformation we are doing we first need to have the original points of the rectangle, for the original rectangle we have:
![\begin{gathered} A(-1,2) \\ B(-1,5) \\ C(-3,5) \\ D(-3,2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m7f8sdaqgsfxmap580pob1k5nede082hf9.png)
Now, we have to remember that a rotation of 90° counterclockwise about the origin is given by:
![(x,y)\rightarrow(-y,x)](https://img.qammunity.org/2023/formulas/mathematics/college/ncbatl6u6j1uk5mvteojrgqis6t45s1ec1.png)
Applying this transformation to the points we have that:
![\begin{gathered} A(-1,2)\rightarrow A^(\prime)(-2,-1) \\ B(-1,5)\rightarrow B(-5,-1) \\ C(-3,5)\rightarrow C^(\prime)(-5,-3) \\ D(-3,2)\rightarrow D^(\prime)(-2,-3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6gcqs46zkm3nlvfzgzuypx42zajc3u8a0o.png)
we notice that after the transformation we get the vertexes for the second figure.
Therefore we conclude that the transformation shown is a Rotation of 90 degrees counterclockwise about the origin.