Explanation
We are given the following:
![\sin\theta=-(7)/(25)\text{ }and\text{ }\pi<\theta<(3\pi)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/7bqlgmja2kqad71ftnmu0nffqk3cn3ttqp.png)
We are required to determine the exact value of sin 2Θ.
We know that the trigonometric identity for sin 2Θ is thus:
![\sin2\theta=2\sin\theta\cos\theta](https://img.qammunity.org/2023/formulas/mathematics/college/2j47s5redjgfwpzou4x94cs8k4czywfvsv.png)
Since Θ is between 180° and 270° as given above, we know that this angle falls in the third quadrant, and sine and cosine are negative in this quadrant.
Therefore, we have:
![\begin{gathered} \sin\theta=(7)/(25)\to(opposite)/(hypotenuse) \\ \\ \text{ Using the Pythagorean theorem,} \\ hypotenuse^2=opposite^2+adjacent^2 \\ 25^2=7^2+adj^2 \\ adj^2=25^2-7^2 \\ adj=√(25^2-7^2) \\ adj=√(625-49)=√(576) \\ adj=24 \\ \\ \text{ Hence, we have:} \\ \cos\theta=(adjacent)/(hypotenuse) \\ \cos\theta=(24)/(25) \\ \\ \text{ In the third quadrant, } \\ \cos\theta=-(24)/(25) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/b9cq8a8i2srz85h5shi8pw50x3hq86yucz.png)
Now, we can determine the value of sin 2Θ as:
![\begin{gathered} \sin2\theta=2\sin\theta\cos\theta \\ \sin2\theta=2\cdot(-(7)/(25))\cdot(-(24)/(25)) \\ \sin2\theta=(2*7*24)/(25*25) \\ \sin2\theta=(336)/(625) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9uax2hvvdn5vuv93qgpllr54ewx1wjsbrd.png)
Hence, the answer is:
![\sin2\theta=(336)/(625)](https://img.qammunity.org/2023/formulas/mathematics/high-school/gowalnybfblhhakvxbc7yjq2dd1w9mgok3.png)