Answer:

Step-by-step explanation:
Here, we want to solve the given equation

This simply means that:
![\begin{gathered} \sqrt[]{3\text{ }}y+1\text{ = 0} \\ \sqrt[]{3}\text{ y = -1} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yblz9bn33k3kydt0n4ulon7hnon4h3izmw.png)
From here, we can square both sides:
![\begin{gathered} 3y^2\text{ = 1} \\ y^2\text{ = }(1)/(3) \\ \\ y\text{ = }\sqrt[]{(1)/(3)} \\ \\ y\text{ = }\pm\sqrt[]{(1)/(3)} \\ \\ or\text{ } \\ \\ y\text{ = }\frac{\pm\sqrt[]{3}}{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/88z16bfr89mhclx1osg1kzb5qza6o9kpmt.png)
Recall that we made a substitution for tan x:
![\begin{gathered} \frac{\sqrt[]{3}}{3}\text{ = tan x} \\ x\text{ = }\tan ^(-1)(\frac{\sqrt[]{3}}{3}) \\ x\text{ = 30 deg = }(\pi)/(6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2bt56gwdkg19au9cf3xga76efz1y0ajs9g.png)
Let us find the other values of x between 0 and pi
We know that tan is negative on the second quadrant
We have the values in this quadrant as 180-theta
Which is 180-30 = 150 degrees which is same as 150/180 pi = 5/6pi