To find the Length of MKL, we need to find the length of JM and JL using the length of an arc formula
![\begin{gathered} \text{Length of arc =}(\theta)/(360)*2\pi r \\ \text{where r=MK/2 =5m} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ztb5a7lz7vv188dblazdfzwsfd15fiozgc.png)
STEP 1
Find the angle subtended at N and find the arc JM
N +52= 180 -------sum of angles on a straight line.
N= 180-52
N=128
![\begin{gathered} JM=(128)/(360)*2*3.14*5 \\ JM=11.164 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k1y0r2nqu7yu8hzviulyz15u9rcsj3cnrc.png)
STEP 2
Find the length of JL
The angle subtended at Therefore,
![\begin{gathered} JL=(90)/(360)*2*3.14*5 \\ JL=7.85 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zhradtfu19ske5c2mdz64t9z82yipzmhpz.png)
STEP 3
Find the lenght of MKL. MKL is the sum of JM and JL
![\begin{gathered} \text{MKL}=11.164+7.85 \\ =19.01 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/or7iqfwridfwwq58j8jxjfpboq78q0j88t.png)
The answer is 19.01m