Let x be the width of the matting, since it is of equal width and the total area is equal to 10000cm^2 (1m^2=1mx1m=100cmx100cm=10000cm^2); then,
![\begin{gathered} A=(60+2x)(80+2x) \\ \text{and} \\ A=10000 \\ \Rightarrow(60+2x)(80+2x)=10000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ri6t54jv3vymng9z4zi91g3l677ybj8tz8.png)
In a diagram
Solving for x,
![\begin{gathered} \Rightarrow4x^2+280x+4800=10000 \\ \Rightarrow4x^2+280x-5200=0 \\ \Rightarrow x^2+70x-1300=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/73bb91rd7g5rzag9efnuy4hu4dxvnnmfav.png)
Solving the quadratic equation,
![\Rightarrow x=\frac{-70\pm\sqrt[]{4900+4\cdot1300}}{2}=-35\pm\frac{\sqrt[]{10100}}{2}\Rightarrow-35\pm5\sqrt[]{101}](https://img.qammunity.org/2023/formulas/mathematics/college/78qsbwlexryg0ozgfvwrb8znhvjkly1nr4.png)
And x has to be a positive number since it is a measurement; therefore,
![\begin{gathered} \Rightarrow x=5\sqrt[]{101}-35 \\ \Rightarrow x=15.249378\ldots \\ \Rightarrow x\approx15.25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ni96flsn2zyra89fe6cd73g1b1dfg5azsi.png)
The answer is approximately 15.25cm.