Using the z-score formula, get the z-value of the score 660.
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2023/formulas/mathematics/college/h06hsre30elxbqnbdkqzw5pbp57988qa0r.png)
![\begin{gathered} \text{Substitute} \\ x=660 \\ \mu=500 \\ \sigma=75 \\ \\ z=(x-\mu)/(\sigma) \\ z=(660-500)/(75) \\ z=(160)/(75) \\ z=2.13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mbbzly5ss5lvufrl6gud55tylaz3xnwov1.png)
The score 660 is 2.13 standard deviation from the mean.
The percentage of students that will likely get a score of 660 is
![\begin{gathered} P(z<2.13)=0.9834 \\ \\ \text{Convert }0.9834\text{ to percentage} \\ 0.9834\rightarrow98.34\% \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1x2lor5ahc31zpvvk2dnlp6q012oyy7vys.png)
The percentage of students that will likely get a score below 660 is 98.34%.