Answer:
![-2a^(11)b^9](https://img.qammunity.org/2023/formulas/mathematics/high-school/yc8dltl40qv84g4n3k8av84zs9uhq0g0jm.png)
Explanation:
Given the expression:
![(-10a^2b^4)/(5a^(-9)b^(-5))](https://img.qammunity.org/2023/formulas/mathematics/high-school/i3p6ubp0grjpw0pulb3husprb2q9qcfcm6.png)
First, rewrite the fraction by separating the constants, and variables a and b.
![\begin{gathered} (-10a^2b^4)/(5a^(-9)b^(-5))=-(10)/(5)*(a^2)/(a^(-9))*(b^4)/(b^(-5)) \\ =-2*(a^2)/(a^(-9))*(b^4)/(b^(-5)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/a3b3261vck9m3nve6h4uf8ekajv1fe7mlp.png)
Next, apply the division rule of exponents:
![(x^m)/(x^n)=x^(m-n)](https://img.qammunity.org/2023/formulas/mathematics/college/sxytjf625hnc0vm0ovn3g4qmcnwhi5dt6g.png)
So, we have:
![\begin{gathered} =-2* a^(2-(-9))* b^(4-(-5)) \\ =-2* a^(2+9)* b^(4+5) \\ =-2a^(11)b^9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/c08dexk9itwpltriuvoh04fmr2u5yjm7hy.png)
The simplified form of the expression without any negative exponent is:
![-2a^(11)b^9](https://img.qammunity.org/2023/formulas/mathematics/high-school/yc8dltl40qv84g4n3k8av84zs9uhq0g0jm.png)