219k views
4 votes
The midpoint of AB is M (0, -4). If the coordinates of A are (2, -1), what are thecoordinates of B?

User Aqquadro
by
3.4k points

1 Answer

4 votes

Given:

The midpoint of AB is M

Coordinates of M (0,-4)

Coordinates of A (2.-1)

Find-:

The value of coordinates of B

Explanation-:

The Coordinates of B

Let Coordinates of B is


B=(x,y)

The midpoint formula is


M(x,y)=((x_1+x_2)/(2),(y_1+y_2)/(2))

Where,


\begin{gathered} (x,y)=\text{ Midpoint} \\ \\ (x_1,y_1)=\text{ First point} \\ \\ (x_2,y_2)=\text{ Second point} \end{gathered}

The midpoint is


\begin{gathered} M=(0,-4) \\ \\ A=(2,-1) \\ \\ B=(x,y) \end{gathered}

So, Midpoint is


\begin{gathered} (0,-4)=((2+x)/(2),(-1+y)/(2)) \\ \\ \end{gathered}

So, the (x,y) is


\begin{gathered} (2+x)/(2)=0 \\ \\ 2+x=0 \\ \\ x=-2 \end{gathered}

The value of "y"


\begin{gathered} (-1+y)/(2)=-4 \\ \\ -1+y=-4*2 \\ \\ -1+y=-8 \\ \\ y=-8+1 \\ \\ y=-7 \end{gathered}

So the point B is


B(x,y)=(-2,-7)

User Morten Haraldsen
by
3.7k points