Answer with Explanation: Let us let B represent a Booster pack and P represent a premade deck, we can write the following simultanous equations:
![\begin{gathered} B+P=56 \\ 5B+1P=88 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7w0euimbyntxzr6ley1v5lkptvyf3ye2ii.png)
The solution to the system is as follows:
![\begin{gathered} B+P=56 \\ 5B+1P=88 \\ \therefore\rightarrow \\ B=56-p \\ 5(56-P)+1P=88 \\ 280-5P+1P=88 \\ 280-4P=88 \\ 4P=280-88=192 \\ P=(192)/(4)=48 \\ P=48 \\ \therefore\rightarrow \\ B=56-P=56-48=8 \\ B=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dzbr9sse7dz2xthurjnv4vg4y11qrhz20o.png)
In conclusion, the Booster pack has 8 number of cards and premade deck has 48 number of cards.