Let us take two points from the table values,
(5,4) and (10,7)
To find the equation:
First, find the slope of th equation
![\begin{gathered} m=(y_2-y_1)/(x_2-x_1) \\ =(7-4)/(10-5) \\ =(3)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xj1vd2h81j3y4miukyk39vq8r0m3i2x639.png)
Then, substitute the slope in the slope intercept form of an equation,
![\begin{gathered} y=mx+c \\ y=(3)/(5)x+c\ldots\ldots.(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iuhtw56m36uvrdraa47rl305dzwh7k42zv.png)
Next, lets find the y-intercept c:
Since, the equation passes through the point (5,4) ,
Hence,
![\begin{gathered} 4=(3)/(5)(5)+c \\ 4=3+c \\ c=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pgeny8wnzfk2w7xozcfk467zwg8wl9izng.png)
Substitute c=1 in equation (1) we get,
![y=(3)/(5)x+1](https://img.qammunity.org/2023/formulas/mathematics/college/4voyjwgi4bahqlbjwh1cxzbih43u27nstp.png)
Hence, the correct option is C.