Traveler's ground speed against the walkaway:
![v_{\text{against}}=4\text{ ft/s}](https://img.qammunity.org/2023/formulas/mathematics/college/rjco8ifmv23kyqdfhmwdxiq6ncqbey0i9z.png)
Traveler's ground speed with the walkaway:
![v_{\text{with}}=8\text{ ft/s}](https://img.qammunity.org/2023/formulas/mathematics/college/ibyd0j4imsiic6h1pg4uhugh9oxkw3emow.png)
When the traveler is moving against the walkaway, the resulting speed is:
![v_{\text{against}}=|v_{\text{walkaway}}-v_{\text{traveler}}|](https://img.qammunity.org/2023/formulas/mathematics/college/7deff9ukh6an0ifbhbqkk7fgl0yl1bosx7.png)
Where v_walkaway is the speed of the walkaway, and v_traveler is the traveler speed off the walkaway.
Similarly, if the traveler is moving with the traveler:
![v_{\text{with}}=v_{\text{walkaway}}+v_{\text{traveler}}](https://img.qammunity.org/2023/formulas/mathematics/college/nbr9kns6clksnfvpvyk1f0zfu3bz7408fw.png)
Then, the system of equations:
![\begin{gathered} 8=v_{\text{walkaway}}+v_{\text{traveler}} \\ 4=v_{\text{walkaway}}-v_{\text{traveler}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r2q22bpskgl38jq8tzo17q1kwelseije6o.png)
Adding these equations:
![\begin{gathered} 8+4=v_{\text{walkaway}}+v_{\text{traveler}}+v_{\text{walkaway}}-v_{\text{traveler}} \\ 2v_{\text{walkaway}}=12_{} \\ v_{\text{walkaway}}=6\text{ ft/s} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p5flk1qzbfkyq4pjt11yw6pc6osyepdk3l.png)
Using this value and the first equation:
![\begin{gathered} v_{\text{walkaway}}+v_{\text{traveler}}=8 \\ \Rightarrow v_{\text{traveler}}=2\text{ ft/s} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t6573wof4xq2dluvw4y35hqfvzx6tkliqc.png)